3 ^e	Fiche compétences Géo chapitre 2	Thalès 2	(G11)
exercice 1:	(AB) // (DE) AC = 4 cm CD = 6 cm BC = 3 cm Calculer CE	A C E	D
exercice 2:	(HI) // (FG) JH = 5,2 cm HI = 3 cm FG = 3,5 cm Calculer JF arrondi au cm	H F	I G
exercice 3:	(KL) // (NO) NL = 10 km NO = 6 km NM = 4 km Calculer KL	M L	<u></u>
exercice 4:	(HQ) // (PG) HQ = 30 cm PG = 2 dm VQ = 6 dm Calculer GQ	P G	Q/ —

3° corrections	Fiche compétences Géo chapitre 2	Thalès 2	(G11)
exercice 1:	Les droites (AD) et (BE) sont sécantes et les droites (AB) et (DE) sont parallèles, j'utilise le théorème de Thalès: $ \frac{CA}{CD} = \frac{CB}{CE} = \frac{AB}{DE} $ $ \frac{4}{6} = \frac{3}{CE} = \frac{AB}{DE} $ donc $ CE = \frac{3 \times 6}{4} $ $ CE = 4.5 cm $	n C,	
	,		
exercice 2:	Les droites (HF) et (IG) sont sécantes en les droites (HI) et (FG) sont parallèles, j'utilise le théorème de Thalès: $ \frac{JH}{JF} = \frac{JI}{JG} = \frac{HI}{FG} $ $ \frac{5,2}{JF} = \frac{JI}{JG} = \frac{3}{3,5} $ donc $ JF = \frac{3,5 \times 5,2}{3} $ $ JF \approx 6 cm $	J,	
exercice 3:	$M \in [NL]$, donc $ML = NL - NM$ = $10 - 4$ = 6 km		
	- Les droites (NL) et (OK) sont sécantes les droites (NO) et (KL) sont parallèles, j'utilise le théorème de Thalès: $ \frac{MN}{ML} = \frac{MO}{MK} = \frac{NO}{LK} $ $ \frac{4}{6} = \frac{MO}{MK} = \frac{6}{LK} $ donc $KL = \frac{6 \times 6}{4}$ $KL = 9 \text{ km}$	s en M,	

Je convertis HQ = 30 cm = 3 dm

Les droites (HP) et (QG) sont sécantes en V, les droites (HQ) et (PG) sont parallèles, j'utilise le théorème de Thalès:

$$\frac{VP}{VH} = \frac{VG}{VQ} = \frac{PG}{HQ}$$

$$\frac{VP}{VH} = \frac{VG}{6} = \frac{2}{3}$$

donc
$$VG = \frac{2 \times 6}{3}$$

 $VG = 4 dm$

$$G \in [VQ]$$
 donc $GQ = VQ - VG$
= $6 - 4$
= 2 dm